CALCULATION GUIDE

FOR TIME FLOW CONTROLS SUPPLY PIPES

TABLE 2 / MINIMUM CALCULATION TO SUPPLY TIME FLOW VALVES

	${ }^{\text {Basin }}$	SHower	URINAL	SIPHON ACTION URINAL	SIPHON ACTION URINAL (with small waste)	wc
Min. flow rate Q min. $(\mathrm{L} / \mathrm{sec}$.	$0.10 \mathrm{~L} / \mathrm{sec}$.	0.20 or $0.10 \mathrm{~L} / \mathrm{sec}$ **	${ }^{0.15 L / s e c .}$	${ }^{0.50 L / s e c}$.	${ }^{0.30 \mathrm{~L} / \mathrm{sec} \text {. }}$	1 L/sec.**2
Min. dynamic pressure (bar)	0.5	1	0.5	0.6	0.6	1.5
Simultaneous Coeff for normal use Y	$Y=\frac{0,8}{\sqrt{(x-1)}}$	$Y=\frac{0,8}{\sqrt{(x-1)}}$	$Y=\frac{0,8}{\sqrt{(x-1)}}$	$Y=\frac{0,8}{\sqrt{(x-1)}}$	$Y=\frac{0,8}{\sqrt{(x-1)}}$	$\begin{gathered} \text { see Table } 1 \\ \text { Design Flow Rate } \\ \text { page } 245 \end{gathered}$
Simultaneous Coeff for high use Y	$Y=\frac{2}{\sqrt{(x-1)}}$	$Y=\frac{2}{\sqrt{(x-1)}}$	$Y=\frac{2}{\sqrt{(x-1)}}$	$Y=\frac{2}{\sqrt{(x-1)}}$	$Y=\frac{2}{\sqrt{(x-1)}}$	-
Design Velocity	Out of housing area: $1.5<\mathrm{V}<2 \mathrm{~m} / \mathrm{sec}$, Housing area: $1 \mathrm{~m} / \mathrm{sec}$.					

1. Note installation data per branch

Example Figure A

- Total available pressure 4 ba

Design velocity $1.5 \mathrm{~m} / \mathrm{sec}$.
Supply head $A D=1 \mathrm{~m}, A B C=12 \mathrm{~m}$.
Type and number of outlets per branch
AD: 6 WC, ABC: 5 urinals and 6 basins.
Base flow rate (amin. .) L/sec.
$5 \mathrm{WC}=1.5 \mathrm{~L} / \mathrm{sec} .$,
6 basins $=0.10 \mathrm{~L} / \mathrm{sec}$.

2. Calculate flow rate per installation branc

 Add together the base flow rate for each outlet. See minimum Q calculation Table 2
Example ABC branch

5 urinals $\times 0.15 \mathrm{~L} / \mathrm{sec} .=0.75 \mathrm{~L} / \mathrm{sec} .+6$ basins $\times 0.10 \mathrm{~L} / \mathrm{sec}$. $=0.60 \mathrm{~L} / \mathrm{sec}$.
otal flow rate $=1.35 \mathrm{~L} / \mathrm{sec}$ separately.
E.g. AD branch 6 WCs, see section 3
. Calculate the design flow rate
Gross flow rate \times simultaneous coefficient (Y), simultaneous demand at peak periods, use the formula

$$
Y=\frac{2}{\sqrt{(x-1)}}
$$

mple branch ABC
Gross flow rate for 5 urinals +6 basins $=1.35 \mathrm{~L} / \mathrm{sec}$, Design flow rate $=1.35 \mathrm{~L} / \mathrm{sec} . x \frac{2}{\sqrt{(11-1)}}=0.85 \mathrm{~L} / \mathrm{sec}$.

Special cases: showers with high simultaneous demand at peak periods (sports centres, barracks, Use the simultaneous coefficient 0.6 or 0.7 .

Example
Design flow rate for 12 SPORTING showers
Ref. 714000 :
f. 714000

Gross flow rate $1.2 \mathrm{~L} / \mathrm{sec} . \times 0.7=0.84 \mathrm{~L} / \mathrm{sec}$.
Design flow rate for 24 SPORTING showers
ref. 714000 , gross flow $2.4 \mathrm{~L} / \mathrm{sec} . \times 0.6=1.44 \mathrm{~L} / \mathrm{sec}$.
Flush valve See recommendations Table 1 ,
WC Column page 245.
the sum of the flow ra
after the application rates for the other appliances
Example Figure A
Branch AD: 6 WCs, design flow $=3 \mathrm{~L} / \mathrm{sec}$.
Branch ABC: 5 urinals +6 basins, design flow $=0.85 \mathrm{~L} / \mathrm{sec}$
Design flow of the inlet pipe in $A=3.85 \mathrm{~L} / \mathrm{sec}$.
or sanitary fittings with normal or low demand Use the simultaneous coefficient

. Pipe diameter selection: using the Darius Abacus chart

Reading the DARIUS ABACUS

Mark the DESIGN FLOW and the DESIGN VELOCITY
on the chart and join these points with a ruler. The pipe DIAMETER and PRESSURE DROPS can now be read on corresponding scales, Take the higher reading

Example 1

stalling 30 time flow basin taps.
Design Flow $0.45 \mathrm{~L} / \mathrm{sec}$.
The abacus indicates $\varnothing 20 \mathrm{~mm}$, either copper pipe 20/22
or steel pipe 20/27 (3/4").
If the pressure drop is too great to supply the most distant tap P<0.4 bar), a larger diameter pipe will be required, selecting a 1 "
and

UB: for hot water systems do not use galvanised steel pipes, nly copper or synthetic material pipes.

. Calculate system pressure drops in m head

5.1 Pressure drop (friction in the pipes)

Multiply the pressure drop (J) as perthe Darius Abacus
Ey the pipe ength.
E.glush valves, $\mathrm{Q}=3 \mathrm{~L} / \mathrm{sec}$., $\mathrm{U}=1.5 \mathrm{~m} / \mathrm{sec}$., pipe length $=10 \mathrm{~m}$. Read from the Darius Abacus pipe diameter (D) $=\varnothing 50 \mathrm{~mm}$ $J=0.08 \mathrm{~m}$ head.
Total pressure drop: 0.08 m head $\times 10 \mathrm{~m}=0.8 \mathrm{~m}$ head
5.2 Add the difference in height of the water column E.g. $6 \mathrm{~m}=6 \mathrm{~m}$ head.
5.3 Add the specific pressure drop for the outlet
see the manufacturer's catalogue, for example, here are the curren pressure losse
water meter at peak usage $=6 \mathrm{~m}$ head
pressure reducer $=5 \mathrm{~m}$ head
group thermostatic mixing valve $=6 \mathrm{~m}$ head
6. Check residual dynamic pressure is sufficient including pressure losses

Example 2
5 flush valves installed on the first floor.
Pipe length $\mathrm{ABCDE}=38 \mathrm{~m}$
Design flow $=3 \mathrm{~L} / \mathrm{sec}$.
Design velocity $=1.5 \mathrm{~m} /$
ipe diameter based on Darius Abacus $=50 \mathrm{~mm}$
Pressure drop in the pipe: 0.08 m head $\times 38 \mathrm{~m}=3.04 \mathrm{~m}$ head
Add difference in height $=6 \mathrm{~m}$ head.
Total pressure drop $=9.04 \mathrm{~m}$ head, approximately 0.9 ba
esidual dynamic pressure $(\mathrm{E})=3-0.9=2.1 \mathrm{bar}$
For effective operation, the minimum dynamic pressure required
1 bar, therefore the selected pipe diameter is correct.

. Insufficient pressure

See minimum dynamic pressure Table 1 .
sufficient, increase the size of the pipe set (contact manufacturers for further information).

